
PHYSICAL REVIEW B 90, 085136 (2014)

Model for quantitative tip-enhanced spectroscopy and the extraction
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Near-field infrared spectroscopy by elastic scattering of light from a probe tip resolves optical contrasts in
materials at dramatically subwavelength scales across a broad energy range, with the demonstrated capacity for
chemical identification at the nanoscale. However, current models of probe-sample near-field interactions still
cannot provide a sufficiently quantitatively interpretation of measured near-field contrasts, especially in the case
of materials supporting strong surface phonons. We present a model of near-field spectroscopy derived from
basic principles and verified by finite-element simulations, demonstrating superb predictive agreement both with
tunable quantum cascade laser near-field spectroscopy of SiO2 thin films and with newly presented nanoscale
Fourier transform infrared (nanoFTIR) spectroscopy of crystalline SiC. We discuss the role of probe geometry,
field retardation, and surface mode dispersion in shaping the measured near-field response. This treatment enables
a route to quantitatively determine nanoresolved optical constants, as we demonstrate by inverting newly presented
nanoFTIR spectra of an SiO2 thin film into the frequency dependent dielectric function of its mid-infrared optical
phonon. Our formalism further enables tip-enhanced spectroscopy as a potent diagnostic tool for quantitative
nanoscale spectroscopy.
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I. INTRODUCTION

Since Synge’s 1928 letter to Einstein proposing a bold
method for optical imaging beyond the diffraction limit
[1], subwavelength optical characterization techniques have
remained subjects of intensive interest and fierce debate owing
to their transformative potential. Among such techniques,
apertureless near-field scanning optical microscopy (ANSOM)
[2,3] has shattered the diffraction limit, achieving optical
resolutions better than λ/1000 at infrared and terahertz (THz)
frequencies [4–6].

Recent coupling of ANSOM to a broadband coherent
infrared light source and asymmetric Michelson interferometer
has enabled Fourier transform infrared spectroscopy at the
nanometer-length scales (nanoFTIR) [7–9], in switchable
combination with single-frequency imaging by the pseudo-
heterodyne (PSHet) detection scheme [10,11]. These novel
interferometric techniques detect both amplitude and phase
[12–14] of the probe-scattered “near-field signal,” which
encodes nanoscale near-field optical contrasts from the sample
and transmits them to the far-field. While applications to
nanoscale chemical sensing at vibrational “fingerprint” en-
ergies are obvious [9,15,16], the utility of this instrument for
fundamental nanoscale studies of correlated electron systems
are equally compelling [17–24].

ANSOM employs a conductive or dielectric AFM probe
as both an intense near-field source and scatterer of light
into the far field. The mechanism of optical contrast has long
been understood intuitively via the simple point dipole model
[25,26], in which radiation scattered from a small polarizable
sphere of radius a illuminated by an incident field Einc is
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modulated through electrostatic interaction with a material
surface located a distance d away in the z direction:

αeff ≡ Pz /Einc = α

1 − αβ/[16π (a + d)3]
with

(1)
α ≡ 4πa3 and β ≡ ε − 1

ε + 1
.

Here, α denotes the “bare” polarizability of the sphere
producing a vertical dipole moment Pz and β denotes the
quasistatic limit of the Fresnel coefficient rp(q,ω). A function
of both frequency ω and in-plane momentum q, the Fresnel
coefficient describes the relative magnitude and phase of
p-polarized light reflected from the surface of material with
frequency-dependent dielectric function ε(ω).

While important theoretical advances have brought near-
field spectroscopy beyond qualitative descriptions [27–32],
available models describing the probe-sample near-field inter-
action remain beset by critical limitations. (1) Many general
formulations, although formally exact, prove cumbersome
to implement for practical calculation beyond reduction to
the simple point dipole model [33,34]. Field retardation and
antenna effects of the probe are explored formally, but not
quantitatively. (2) Although the near-field interaction may
be described as an exact scattering problem, many solution
methods rely on perturbation expansions in powers of the
sample response factor β or rp [9,32,34,35]. One can show
that such series are divergent beyond modest values of rp (the
“strong coupling” regime), leaving this method inapplicable
for the analysis of crystalline solids and strongly resonant
plasmonic systems [31]. (3) A number of tunable geometric
parameters with ad hoc or empirical values are introduced
to quantitatively fit measured data. These include fractional
weights of relevant probe surface charge [30,31], effective
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probe size and geometry [28–30], the bare tip polarizability,
etc. [20]. The multitude of ad hoc tunable parameters provides
an unreliable recipe for predictive modeling or quantitative
interpretation of data.

To address these extant shortcomings, the aim of the
present work is threefold. We first present a new model of
probe-sample near-field interaction, the lightning rod model,
whose generality allows exploring the influence of both
probe geometry and electrodynamic effects, while remaining
formally exact in both theory and implementation. Mathe-
matical reduction of this formalism back to the point dipole
model will make clear that unnecessary ad hoc assumptions
underpin prevailing models [30,31] and that geometric and
electrodynamic considerations must ultimately play a role in
their vindication.

Second, we demonstrate this model’s capability to pre-
dict spectroscopic near-field contrast in the case of layered
structures, which exhibit a strongly momentum-dependent
optical response, as well as strongly resonant systems, through
comparison with near-field spectra measured on thin films
of silicon dioxide (SiO2) and bulk silicon carbide (SiC).
Our measurement apparatus is a novel infrared near-field
microscope equipped for both PSHet imaging and broadband
nanoFTIR spectroscopy, described in Appendix A.

Finally, we present a method to invert the lightning rod
model to extract a material’s complex dielectric function with
nanoscale resolution, which we demonstrate explicitly for an
SiO2 thin-film sample. This procedure, combined with the uni-
fying formalism of the lightning rod model, provides a power-
ful diagnostic tool for quantitatively studying the nanoresolved
optical properties of molecular systems, phase-separated ma-
terials, and confined nanostructures using ANSOM [17].

II. THE LIGHTNING ROD MODEL

Our model describes the near-field interaction between
an ANSOM probe and a sample surface through a general
formalism that is in principle exact, without appealing to
empirical or ad hoc parameters. The chief observable of
ANSOM is the radiation field of a polarized probe placed
in proximity to a sample (experimental details described in
Appendix A). Since the field originates from reorganization
of charges developing on the probe surface in response to an
incident illumination field, together with the near field of the
proximate sample, we begin by forming an expression for this
instantaneous charge distribution.

Constraining our attention to nearly axisymmetric probe
geometries, the charge distribution is succinctly expressed
through a linear charge density λQ(z) ≡ dQ/dz(z), Q denot-
ing charge and z the probe’s axial coordinate. In the quasistatic
approximation, the field Erad re-radiated or backscattered from
the probe is proportional to its induced dipole moment

Pz =
∫

dz z λQ(z). (2)

Appendix E presents how the radiated field is obtained from
λQ(z) when electrodynamic phenomena are of fundamental
importance, i.e., when the size of the scatterer is comparable
to the light wavelength. This relationship highlights the central

role of the induced charge distribution in determining the
measured observables of near-field spectroscopy.

λQ(z) can be written as the sum of charges induced by
the incident field and those differential contributions dλQ nf(z)
induced by reflection of probe-generated near-fields off the
proximate sample:

λQ(z) = Einc �0(z) +
∫

dλQ nf(z). (3)

Here, �0(z) denotes the induced charge per unit field resulting
from incident illumination. Its functional form depends on
the nature of the incident field and the probe geometry, but its
contribution to λQ(z) scales with the magnitude of the incident
field Einc. The induced charge elements dλQ nf(z) take the form

dλQ nf(z) = dQ

∫∫ ∞

0
dq dq ′ G(q) 	dQ→s(q)

× R(q,q ′) 	s→t (q
′) �(q ′,z). (4)

Here, q and q ′ denote in-sample-plane momenta for Fourier
components of the near field reflected by the sample in
response to the polarized probe. Provided a planar sample
geometry, this parametrization offers a sparse basis in which
to efficiently solve the problem, in contrast with real-space
treatments (e.g., the finite element method). Equation (4)
can be understood through the physical mechanism shown
schematically in Fig. 1(b) and described as follows in terms of
field emission from the probe and sample reflection.

Charge elements dQ = dz′λQ(z′) on the probe form
rings with radii Rz′ along its surface. Considered in the
angular spectrum decomposition (Appendix B), each ring
emits a distribution of axisymmetric p-polarized evanescent
fields whose Fourier components are weighted by G(q) =
q J0(qRz′ ). Hereafter, Ji(. . .) denotes a Bessel function of
the first kind at order i, with cylindrical coordinates ρ and
z. These emitted fields (so-called evanescent Bessel beams)
reach the sample surface a distance d below the tip apex
(z = 0) via propagator 	dQ→s(q) = e−q(z′+d) and in the empty
tip-sample gap −d < z < 0 take the divergence-free form (per
unit charge):

�Eq(�r) = G(q)(J0(qρ) ẑ + J1(qρ) ρ̂) eq(z−z′). (5)

In general, the sample may subsequently scatter evanescent
fields with momentum q into distinct Fourier components q ′
as described through a differential sample response function
R(q,q ′). For samples with continuous in-plane translational
symmetry (e.g., flat surfaces, layered structures), this response
function reduces to the Fresnel reflection coefficient for p-
polarized light,

R(q,q ′) = rp(q) δ(q − q ′), (6)

written here as a function of the in-plane momentum q of
incident light, with δ(. . .) denoting the Dirac delta distribution.
These scattered fields extend from the sample surface via prop-
agator 	s→t (q ′) = e−q ′d and repolarize the probe, inducing a
linear charge density (per unit field) described by a probe
response function �(q ′,z). This formalism accommodates the
nontrivial influence of realistic tip geometries on the functional
form of illumination- and sample-induced charge distributions
�0(z) and �(q ′,z). The omission of a term e−q ′z in 	s→t (q ′)
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(a) (b) (c)

FIG. 1. (Color online) (a) Scanning electron micrograph of a typical commercial near-field probe exhibiting a conical geometric profile
and characteristic length scales (probe length and tip radius) separated by nearly three orders of magnitude. The surface profile (blue) is
considered in Sec. VI. (b) Schematic description of the probe-sample near-field interaction, involving emission of cylindrical evanescent fields
from charge elements in the probe and their reflection by the sample. (c) Probe response function �(q,z) (defined in the main text) computed
by the boundary element method (Appendix C) for evanescent fields �Eq of increasing momenta q. Dashed curves indicate the geometric profile
of the probe, and surface charge distribution profiles are normalized by their minimum values for viewing purposes.

requires that the definition of �(q ′,z) account implicitly for the
decay of sample-reflected excitation fields along the probe’s
length.

Induced charge densities can be precomputed for an
axisymmetric probe of arbitrary geometry using a simple
boundary element method (Appendices C and D). Figure 1(c)
displays �(q,z) for several values of q, computed for the case
of a hyperboloidal (conical with rounded tip) probe geometry
with tip curvature radius a. As shown in Fig. 1(c), the density of
charge dramatically accumulating at the probe apex [36]—the
celebrated lightning rod effect—increases roughly as 1/q. This
results from the requisite screening of evanescent fields by
induced charges distributing a distance δz = 1/q along the
probe surface. The momentum-dependent lightning rod effect
is critically absent from models of the probe-sample near-field
interaction lacking a faithful geometric description.

Confining our attention to planar sample geometries,
Eqs. (3), (4), and (6) together describe a self-consistent
quasi-one-dimensional scattering process:

λQ(z) = Einc �0(z) −
∫ ∞

0
dq λ̃Q(q) q e−2qd rp(q) �(q,z)

(7)

with

λ̃Q(q) ≡
∫ L

0
dz′λQ(z′) e−qz′

J0(q Rz′ ). (8)

The integral transform in Eq. (8), whose action on a function
henceforth we indicate by a tilde, denotes summation of near-
fields emitted from charges along the entire length of the probe,
0 < z < L. A similar integral transformation z → s applied to
λ(z) and �(q,z) in Eq. (7) yields an integral equation in λ̃(s):

λ̃Q(s) = Einc �̃0(s) −
∫ ∞

0
dq λ̃Q(q) q e−2qd rp(q) �̃(q,s).

(9)

This resembles the Lippman-Schwinger equation of scattering
theory [37], wherein �̃0(s) and �̃(q,s) here play the role of

in- and out-going “scattering states.” The axisymmetric ap-
proximation, preserving most fundamental aspects of the sys-
tem geometry, affords tractability in this scattering formalism.
Furthermore, computations presented in this work leverage the
concise momentum-space (q and s) description conferred by
Eq. (9).

Provided knowledge of the probe response functions �0(z)
and �(q ′,z) [to wit, their integral transforms �̃0(s) and
�̃(q,s)], Eq. (9) is soluble by traditional methods [38] after
discretizing q to a set of Gauss-Legendre nodes {qi} [39]. We
found our evaluation at Nq ≈ 200 of such nodes to be sufficient
for numerical accuracy to within 1%. Only a finite range of
momenta 0 � q � qmax need be considered in practice, since
�̃0(s) and �̃(q,s) drop precipitously in magnitude above a
cutoff momentum s ∼ 1/a, with a the smallest length scale
relevant to the probe geometry, in this case the radius of
curvature at the probe apex, a ≈ 30 nm for many commercial
probe tips. This reflects the inability of strongly confined fields
(e.g., q ∼ nm−1) to efficiently polarize the probe.

The momentum-space solution to Eq. (9) is then

�λQ =
��0

I − �G
Einc, (10)

where the denominator is taken in the sense of matrix inversion,
vectors imply functional evaluation at momenta {qi}, I is the
identity operator, and other matrices are defined as

�ij ≡ �̃(qj ,si) and Gij ≡ −qi e−2qid rp(qi) δqi δij . (11)

Here, δqi is the measure of qi and δij denotes the Kronecker
delta function. Defining similarly a vector of charge distribu-
tion functions [ ��(z)]i ≡ �(qi,z), the total induced charge is
provided through Eq. (7) as

λQ(z)/Einc = �0(z) + ��(z) · G
��0

I − �G
. (12)

This expression casts Eq. (10) into the real-space repre-
sentation necessary for computing the probe’s total radiated
field, contributions to which result from a functional relation
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�erad ≡ Erad[ ��] derived in Appendix E. Finally, this implies

Erad/Einc = erad, 0 + �erad · G
��0

I − �G
. (13)

Note that dependence on both the tip-sample distance d

and the local optical properties of the sample enter these
expressions through G, whereas geometric properties of the
probe enter separately through �. When applied to a realistic
probe geometry, these expressions constitute the lightning
rod model of probe-sample interaction, so named for its
quantitative description of the strong electric fields localized
by an elongated geometry to a pointed apex. The product
of � and G signifies that strong near-fields from the probe
multiplicatively enhance optical interactions with the sample
surface. Expanding the inverse matrix (13) as a geometric
series reveals an infinite sequence of probe polarization
and sample reflection events, equivalent to the perturbation
expansions presented elsewhere [9,32,34,35].

Equation (13) can also recover the point dipole model
[Eq. (1)]. After simplifying the probe geometry to a metallic
sphere of radius a and assuming that all center-evaluated
(z = a) fields polarize like the homogeneous incident field
Einc, we have

�(q,z) = 3/2 (z − a) e−qa, (14)

�̃(q,s) = −a3 s e−(s+q)a, (15)

and

pz(q) =
∫ 2a

0
dz z �(q,z) = a3 e−qa. (16)

�̃(q,s) is obtained from semicircular Rz in Eq. (8), and
exhibits a characteristic maximum followed by a sharp decay
in magnitude near s ∼ a−1. In this case, Eq. (9) yields λ̃Q(s)
in closed form owing to the separability of �̃(q,s):

λ̃Q(s) = −a3 s e−sa

1 − a3
∫ ∞

0 dq q2 e−2q(d+a) rp(q)
Einc. (17)

The sphere’s polarization is obtained through Eqs. (7) and (2)
as

αeff ≡ Pz/Einc = a3

1 − a3
∫ ∞

0 dq q2 e−2q(d+a) rp(q)
. (18)

If the sample material is weakly dispersive for q 	 ω/c,
rp(q) ≈ β and Eq. (1) is recovered.

Such simplifications are instructive, but this work makes
full implementation of Eq. (13) without recourse to approxi-
mation, thus revealing aspects of the probe-sample near-field
interaction unresolved by the point dipole model. While
perturbative expansions and the point-dipole model may be
attractive for their relative simplicity, they are certainly not
expected to be accurate. In particular, for large β, nothing
short of the full numerical solution to Eq. (7) is acceptable
for predicting experimental observables with quantitative
reliability. Our procedure for doing so is detailed in the
following sections.

The near-field experiments presented in this work utilize
lock-in detection of the probe’s backscattered field at har-
monics n of the probe tapping frequency � to suppress noise

and unwanted background. Simulating this technique, the
probe’s backscattered field Erad [Eq. (13)] is connected to
the experimentally observed amplitude Sn and the phase φn

signals through a sine transform under a sinusoidally varying
tip-sample distance d:

sn(ω) = I(ω)
∫ π/�

−π/�

dt sin(n�t) Erad(d,rp(q,ω)) with

(19)
d = A(1 + sin(�t)),

Sn(ω) ≡ |sn(ω)| , and φn ≡ arg {sn(ω)} . (20)

Here, � and A are the tapping frequency and amplitude
of the near-field probe, respectively, and I(ω) denotes the
frequency-dependent instrumental response of the collection
optics, interferometer, and detector used for the measurement.
This factor can be removed by normalizing experimental sn(ω)
to “reference” near-field signal values, as collected from a
uniformly reflective sample material such as gold or undoped
silicon. This normalization process is further discussed in
Sec. IV.

A prediction of near-field contrast using the lightning rod
model therefore requires calculation of Eq. (13) at several
values of d; in practice we find 20 such values sufficient, with
evaluation of Eq. (13) for each requiring several milliseconds
on a single 2.7 GHz processor. Cumulatively, the calculation
remains both realistic and fast, more so than previously
reported semianalytic solutions for realistic probe geometries
[40,41]. For example, typical calculations of a demodulated
and normalized near-field spectrum across 100 distinct fre-
quencies require less than 10 seconds of computation time.

We conclude this formal introduction with a conceptual
clarification. Although the geometry and material composition
of the near-field probe implicitly determine its response func-
tion �(q,z), the formalism embodied by Eq. (13) is general and
outwardly irrespective of specific properties of the probe. Also,
while plasmonic enhancement may be encompassed in �(q,z),
it is not a prerequisite for effective near-field enhancement at
the probe apex. Near-field enhancement is attainable through
a combination of three distinct mechanisms [42]: (1) the
lightning rod effect proper, due to accumulation of charge
at geometric singularities, an essentially electrostatic effect,
(2) plasmonic enhancement, due to the correlated motion of
surface charges near the plasma frequency of metals, and
(3) antenna resonances, in which the size of an optical antenna
correlates with the incident wavelength in a resonant fashion,
a purely electrodynamic effect.

The quasistatic boundary element utilized in this work (Ap-
pendix C) reproduces the first of these mechanisms by way of
�(q,z), whereas its electrodynamic counterpart (Appendix D)
reproduces all three. Although plasmonic enhancements are
scarcely attainable in metallic probes at infrared frequencies,
Secs. III and IV establish the important influence of both
the lightning rod effect and antenna resonances in near-field
spectroscopy.

III. THE QUASISTATIC CASE

We now apply Eq. (13) to realistic probe geometries in
the quasistatic limit to investigate whether the quasistatic
approximation is appropriate for quantitative prediction of
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FIG. 2. (Color online) Spectral near-field contrast between the
1130 cm−1 surface phonon polariton of SiO2 and silicon (providing
normalization) as predicted by the lightning rod model for an
ellipsoidal probe in the quasistatic approximation. Contrast increases
monotonically beyond experimentally observed levels as the probe
length is increased.

near-field contrasts. By reducing the physical system to
electrostatics, this approximation is strictly justified only in
treating light-matter interactions at length scales much smaller
than the wavelength of light, whereas a typical near-field probe
consists of an AFM tip tens of microns in height [Fig. 1(a)],
comparable to typical wavelengths encountered in infrared
near-field spectroscopy. Consequently, for the assumptions
of a quasistatic probe-sample interaction to remain valid, the
emergent behavior of a realistic near-field probe must be shown
nearly equivalent to those of a deeply subwavelength one.

To test this assumption, we consider the near-field interac-
tion between a metallic ellipsoidal probe oriented vertically
over a planar sample of 300 nm of thermal silicon dioxide
(SiO2) on silicon substrate. This sample system and model
probe geometry were considered in a previous work [40],
demonstrating the capacity of near-field spectroscopy to
resolve the ω ≈ 1130 cm−1 surface optical phonon of thermal
oxide films as thin as 2 nm. We extend the theoretical study
presented therein to investigate the influence of the probe
length L on the amplitude of experimentally measurable
backscattered near-field signal S3(ω) (normalized to silicon)
predicted by the lightning rod model. The outcome is presented
in Fig. 2.

The probe tapping amplitude is 80 nm in these simulated
experiments, and the radius of curvature a at the probe apex
(equal to the inverse surface concavity) is held constant at
30 nm, typical of experiments with commercially available
near-field probes. The minimum probe-sample distance is
taken as d = 0 nm throughout (viz., physical contact, consis-
tent with the established description of tapping mode AFM).
We describe the thin-film optical response with a momentum-
dependent Fresnel coefficient [43] (further discussed in Sec. V)
using optical constants of thermal oxide taken from literature
[44].

The probe response function �(q,z) is computed in the
quasistatic approximation once for each probe geometry
according to a simple boundary element method. Mathematical
details are provided in Appendix C. Whereas in this work

we present calculations only for ideally conducting metallic
probes, Appendix C presents also the general formulation
suitable for application to dielectric probes. Consequently, the
case of a dielectric probe presents no formal difficulty for the
model presented here. However, previously reported models
present a suitably simpler description of the “weak-coupling
regime” in which externally excited near-fields may be mapped
nonperturbatively [13,45,46]. We identify this as the regime
in which a perturbation expansion of Eq. (13) is found to
converge, and several terms therein might be summed for a
sufficient estimate of near-field scattering.

As shown in Fig. 2, the most dramatic feature of our
quasistatic calculations is the strong variation in normalized
scattering amplitude with increasing probe length at the probe-
sample polariton resonance. The implication is worrisome:
there is no clear rational choice for “effective probe length”
when computing the strength of probe-sample near-field
interaction in the quasistatic approximation. With a free-
space wavelength of light λ ∼ 10 μm, although the largest
credibly quasistatic probe length L ∼ λ/10 (or L ∼ 20a)
provides reasonable qualitative agreement with data acquired
by nanoFTIR under identical experimental conditions (Fig. 7),
quantitative agreement is clearly only attainable a posteriori,
for example by fitting to agreeable values of L. Furthermore,
the extreme dependence on probe geometry exhibited here
discredits the utility of quantitative “fits” to experimental data.
The ill-posed description of near-field coupling afforded by
this quasistatic treatment lacks clear predictive power. We
are therefore compelled towards a consistent electrodynamic
treatment, which as we will show provides an unambiguous
description of near-field interactions with wavelength-scale
probes—a case applicable to the vast majority of near-field
experiments at infrared and THz frequencies.

IV. THE ELECTRODYNAMIC CASE: NEAR-FIELD
PROBE AS ANTENNA

Near-field microscopy is occasionally described as an
antenna-based technique, in which the antennalike near-field
probe efficiently converts incident light into strongly confined
fields at the probe-sample feed gap [17,47–49]. The antenna’s
scattering cross section is consequently modulated through
strong interactions with the sample surface to provide the
nanometer-resolved optical contrasts of ANSOM [4,50]. At
a formal level, these considerations leave the mathematical
form of the lightning rod model unaltered; nevertheless, the
probe response function �(q,z) must encapsulate the probe’s
role as an antenna, particularly in the probe’s response �0(z)
to illumination fields.

As for any antenna, due to retardation and radiative
effects, the field scattered by a near-field probe is manifestly
dependent on both its size relative to the free space light
wavelength as well as its geometric profile relative to the
incident light polarization. Such electrodynamic effects have
been demonstrated experimentally [49,51]. To characterize
how these length scales influence the observables of near-field
spectroscopy, the full electrodynamic responses of two probe
geometries were computed numerically as a function of their
overall length L relative to the free-space wavelength of
incident light.
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FIG. 3. (Color online) (a) Scattered field of a realistic near-field probe geometry under plane wave illumination (incident along the viewing
angle) as computed by the finite-element method. Oscillatory fields near the tip apex are associated with standing-wave-like surface charge
densities resulting from field retardation. (b) (Bottom) Field enhancement at the tip apex computed quasistatically (QS) and electrodynamically
(ED) for two probe geometries of varying size illuminated perpendicular to their principle axes. (Top) Near-field S3 contrast between SiO2 at
the surface optical phonon resonance (ω SO) and silicon simulated by the fully retarded lightning rod model. The vertical dashed line indicates
the length of a typical near-field probe, L ≈ 19 μm.

A fully retarded boundary element method taking account
of field retardation and radiative forcing (mathematical details
provided in Appendix D) was used to calculate charge distribu-
tions �0(z) induced on metallic ellipsoidal and hyperboloidal
probe geometries by incident 10 μm wavelength light (ω =
1000 cm−1). We consider here the hyperboloidal geometry
to faithfully reflect the conelike structure of conventional
near-field probes, which exhibit a taper angle θ ≈ 20◦ relative
to their axis in our experiments. A similar hyperboloid probe
geometry was applied previously by Behr and Raschke to
explore plasmonic field enhancements [41]. However, their
fully analytic treatment necessitates a semi-infinite probe
geometry treated in the quasistatic approximation, requiring
an unconventional field normalization method to obtain finite
values for the probe response. Their formalism also left
backscattering from the ANSOM probe unexplored. For
our examination, we explore the explicit electrodynamics of
probes with lengths between L = 60 nm (rendering a sphere
in the ellipsoidal case) and 30 μm, with the apex curvature
radius held constant at a = 30 nm.

The axisymmetry favored by the lightning rod model was
maintained throughout these calculations by approximating
plane-wave illumination by an inwards-propagating cylindri-
cal field bearing a local phase velocity angled towards the tip
apex at 60◦ from the probe axis (see Appendix D). The validity
of this axisymmetric approximation was confirmed through
comparison of resultant surface charge density profiles with
those predicted by full finite-element simulations (COMSOL

MULTIPHYSICS), consisting of a realistic metallic probe geom-
etry (θ = 20◦ and L = 19 μm) including AFM cantilever,
subject to plane-wave illumination. Differences in charge
density were found to be negligible within microns of the tip
apex, suggesting the robustness of key near-field parameters

to fine details of the extended probe geometry. Figure 3(a)
displays finite-element predictions for the magnitude of the
probe’s scattered field �Esca illustrating the characteristically
standing wavelike pattern of charge density along the probe’s
conical surface, a consequence of field retardation.

The resultant field enhancement at the probe apex in
the absence of a sample calculated by our fully retarded
boundary element method is shown in Fig. 3(b) (bottom) in
comparison with the quasistatic case, demonstrating several
key phenomena: first, quasistatic probe geometries exhibit field
enhancements that increase monotonically with the geometric
“sharpness” L/a due to the electrostatic lightning rod effect,
originating the divergent quasistatic near-field contrast dis-
played in Fig. 2. Second, at lengths L = m λ/2 for odd integers
m � 1, the electrodynamic ellipsoidal probe exhibits resonant
enhancement, whereas minima are observed for m even.
These features signify antenna modes with antisymmetric
and symmetric surface charge densities [52], respectively,
such as those experimentally characterized among similarly
elongated near-field probe geometries [49]. Due to the axially
polarized incident field, resonant enhancement modes of the
hyperboloidal probe are less pronounced and more compli-
cated in character; we discuss them here in no further detail.
Finally, it is clear that quasistatic predictions depart from their
electrodynamic counterparts near a probe length L ∼ λ/10,
precisely where quasistatic approximations might be expected
to falter lacking the antenna enhancement mechanism. Field
retardation halts subsequent increases in enhancement from
the quasistatic lightning rod effect, conferring a practical limit
to realistically attainable near-field enhancements outside the
plasmonic regime.

Similarly, the onset of antenna modes is expected to
modulate the intensity of frequency-dependent backscattered
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radiation from wavelength-scale near-field probes, opening the
possibility to optimally enhance absolute near-field signals
through application-driven design of novel probe geometries.
However, the need for a broadband and normalizable probe
response is equally crucial for spectroscopy applications [53].
A typical infrared near-field spectroscopy experiment involves
normalizing acquired signals to a reference material that
exhibits a nominally flat optical response (e.g., gold or undoped
silicon) in order to remove the influence of instrumental sensi-
tivities [9,20,40], including the probe’s frequency-dependent
antenna response. Normalizability of this response is typically
assumed, but we predict here for the first time the breakdown
of this assumption in the vicinity of strong antenna resonances.

Figure 3(b) (top) displays the result of fully electrodynamic
lightning rod model predictions for the near-field signal S3 SO

obtained at the peak probe-sample resonance frequency (ω ≈
1130 cm−1) induced by the strong SiO2 surface optical phonon,
normalized to the signal from silicon. Whereas an increase
in absolute backscattered signal is expected near the onset
of a (radiative) antenna mode, this evidently accompanies a
remarkable decrease in relative material contrast. The effect
results from strong cross-talk between the implicit probe
response coincident with that of a resonant sample.

The explanation becomes clear when considering that an
antenna’s resonance can be strongly detuned by its dielectric
environment [54,55]. The point dipole model [Eq. (1)] admits
interpretation as a dipole interacting with its mirror image pro-
jected from the sample surface. Extending this interpretation
to an antenna, the electrodynamic system consists then not of
a single antenna, but of a coupled antenna-mirror pair, and
it is well established that coupling an antenna with an exact
mirror copy induces a resonance redshift [56,57]. Whereas the
mirror coupling scales with the inverse dimer gap size in the
case of physical antenna pairs, this coupling scales with rp

in our case, and could be appropriately considered a case of
dielectric loading [46,54].

Consequently, an SiO2 film is expected to detune antenna
resonances more strongly at ωSO than a Si substrate, rendering
their respective probe backscattering signals potentially in-
comparable even when collected at the same frequency, since
there is no clear way to normalize out the effect. Stated another
way, interaction with a resonant sample can not only enhance
the strength of a probe’s antenna mode, it can modify the
antenna behavior outright, driving the probe towards a regime
of destructive radiative interference. Normalized S3 signals
calculated for the electrodynamic ellipsoid [Fig. 3(a), solid
blue line] therefore resemble a quotient of two resonance
functions, oscillatory but shifted versus the light frequency
relative to one another. For this extreme case, we might con-
clude that fluctuations observed in the frequency-dependent
near-field signal radiated from the probe could associate more
with variable dielectric loading of the antenna response than
with genuine near-field contrast.

Antenna detuning is considerably moderated in the case of
the hyperboloidal probe, whose normalized near-field response
at frequencies λ < L exhibits much weaker dependence on
the probe length (or, complementarily, on probing frequency).
The normalization procedure therefore appears sufficient for
systematic removal of the probe sensitivity at the 20% level in
the absence of strong antenna resonances. Furthermore, given

the clear asymptotic character of near-field contrast for the
broadband hyperboloidal probe, it would appear acceptable to
quantitatively model normalized near-field signals from such
a probe geometry using electrodynamic charge distributions
�(q,z) computed only for a single characteristic frequency.
In the case of weak antenna resonances, this renders imple-
mentation of the fully retarded lightning rod model no more
complex than the quasistatic version. Therefore all following
calculations presented in this work are electrodynamic and
calculated in this fashion unless otherwise indicated.

Nevertheless, this examination tells a cautionary tale con-
cerning the use of strongly resonant probes [49] for quantitative
near-field spectroscopy, wherein convolution of the probe’s
antenna response may not be easily removed. However, the
resonant enhancement of back-scattered fields by L ∼ λ/2
probes can provide a fortunate trade-off, with encouraging
applications to resonantly enhanced THz near-field imaging
experiments.

V. MOMENTUM-DEPENDENT LIGHT-MATTER
COUPLING

To test the lightning rod model description of systems ex-
hibiting explicit momentum-dependent light-matter coupling,
we consider a thin film of phonon-resonant SiO2 on silicon
substrate. The film thickness t introduces a characteristic
length scale to the sample geometry, associated with a char-
acteristic crossover momentum q ∼ t−1. Incident evanescent
fields exceeding this momentum are reflected much as though
bulk SiO2 were present, whereas lower momentum fields
can penetrate the film and reflect from the substrate [40].
With the lightning rod model we consider this momentum
dependence exactly and directly compare its predictions to
near-field spectroscopy measurements performed using the
experimental apparatus described in Appendix A.

Mid-infrared near-field images of SiO2 thin films of varying
thickness were acquired with a tunable QCL at a probe tapping
amplitude of 50 nm, taking signal from the underlying silicon
substrate for normalization [Fig. 4(a)]. These data were first
presented in an earlier work [40]. Controlled film thicknesses
were produced through selective etching (NT-MDT Co.) and
confirmed by AFM height measurements acquired simultane-
ously with the collection of near-field images. Spectroscopy
was obtained from area-averaged near-field contrast levels.

Momentum-dependent Fresnel reflection coefficients were
used to describe these systems [43] and provided to the
lightning rod model in order to predict spectroscopic near-field
contrast:

rp(q,ω) = ρ1 + ρ2 e2ikz,1 t

1 + ρ1ρ2 e2ikz,1 t
with

ρi ≡ εi kz,i−1 − εi−1 kz,i

εi kz,i−1 + εi−1 kz,i

, and (21)

kz,i ≡
√

εi (ω/c)2 − q2.

Here, numeric subscripts 0,1,2 correspond with air, SiO2,
and silicon, respectively, εi denotes the complex frequency-
dependent dielectric function of the relevant material (ellipso-
metric optical constants for thermal oxide taken from literature
[44]), and t denotes the oxide film thickness.
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(b)(a)

FIG. 4. (Color online) (a) Near-field response of SiO2 thin films etched to varying thicknesses on a silicon substrate measured by tunable
QCL spectroscopy and normalized to silicon [40] (see text). The faint curves are provided as guides to the eye. (Inset) Sample near-field signal
S3 at ω = 1130 cm−1 overlaid on simultaneously acquired AFM topography. (b) Near-field S3 spectra predicted by the lightning rod model
using optical constants from literature [44]. Data points from the 300-nm film are superimposed for point of comparison. Our model captures
the key features of the data; we infer that discrepancies with ultrathin film data result from substantial variations in optical properties.

Lightning rod model predictions are presented in Fig. 4(b)
for comparison with measured data. Agreement is superior
to that of the simple dipole model and at least as good as
earlier quasistatic predictions with an ad hoc probe geometry
[40]. In contrast to the prediction of a blue-shifting phonon
resonance with decreasing film thickness [originating entirely
in the Fresnel formula (21)], experimental data indicate a
slight redshift among ultrathin films. This discrepancy should
not be counted against our model: although identical optical
constants were employed for predictions at all film thicknesses,
a growing body of experimental and ab initio evidence
suggests legitimate phonon confinement effects can modify
the intrinsic optical properties of nanostructured samples [58].
Clear discernment of these effects by near-field spectroscopy
opens the possibility for quantitatively evaluating the optical
properties of nanostructures that exhibit and utilize bona fide
three-dimensional confinement [59].

A clear physical description of the depth sensitivity
exhibited in Fig. 4 proves just as valuable as quantitative
agreement. The onset of a dramatic decrease in near-field
signal at the phonon resonance near t ∼ a can be understood
on the basis of the momentum decomposition of electric fields
emitted by the near-field probe. A straightforward analysis
building on Eq. (12) reveals the following decomposition for
probe-generated electric fields by their momenta in the plane
of the sample [the basis given by Eq. (5)]:

δE(qi)/Einc =
[
�t→s �G

��0

I − �G

]
i

δq with

(22)
[�t→s]ij ≡ e−qid δij ,

where d is the tip-sample distance and δE(q)/δq is understood
in the sense of a distribution function.

Figure 5(b) displays δE(q) calculated on resonance with
the SiO2 phonon in comparison with the example dispersion
of a 100-nm SiO2 film on silicon shown in Fig. 5(a). The
surface optical phonon is evident at ωSO, characteristically
centered in the restrahlen band between the transverse optical

(ωTO) and longitudinal optical (ωLO) phonon frequencies.
Given that our SiO2 forms an amorphous layer, indication of
these phonon frequencies is approximate. Nanoscale thickness
introduces considerable momentum dependence in the regime
relevant to probe-sample near-field interactions (q ∼ a−1),
effecting a strong phonon response only for momenta q > t−1

as mentioned earlier. The spectroscopic character of the
probe-sample near-field response can therefore be inferred
from the momentum-space integral of δE(q) × rp(q,ω). Note,
however, the explicit rp and d dependence of δE(q) by way

(a)

(b)

FIG. 5. (Color online) (a) Example of strong surface optical
phonon dispersion for a 100-nm-thick SiO2 film on silicon computed
by the Fresnel reflection coefficient rp(q,ω) [Eq. (21)]. (b) The
momentum-dependent distribution of electric fields at the sample
surface (dashed line) calculated by the lightning rod model at the
tip-sample phonon resonance for a conical tip in full contact.
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FIG. 6. (Color online) (a) Amplitude S3 and phase φ3 of the backscattered near-field signal from a 6H SiC crystal, measured in the vicinity
of the surface optical phonon and referenced to a surface-deposited gold film, as obtained in a single acquisition by nanoFTIR. (Left inset)
Visible light image (width 60 μm) above the near-field probe at the SiC/gold interface. (Right inset) PSHet near-field S3 image (width 1 μm) of
the interface with sample and reference nanoFTIR locations indicated. (b) Lightning rod model predictions for near-field signal from SiC using
optical constants measured by in-house ellipsometry. While insensitive to details of probe geometry (see text), fully retarded (Ret.) calculations
provide superior agreement to the experimental spectra than the quasistatic (QS) approximation.

of G in Eq. (22) amounts to a near-field response strongly
superlinear in the sample’s intrinsic surface response. This
description of near-field interactions with optically thin films
should afford a greater understanding of subsurface imaging
applications with ANSOM [60].

VI. THE STRONGLY RESONANT LIMIT:
SILICON CARBIDE

We can critically evaluate the generality of the lightning rod
model formalism through comparison with measurements of
crystalline SiC, a strongly resonant material in the mid-infrared
owing to an exceedingly strong surface optical phonon at
ω ≈ 950 cm−1. Here we find the limit at which contingent
assumptions for alternative near-field models [9,26,32,34,35]
are expected to break down, since resonant materials can inter-
act nonperturbatively along the entire length of the near-field
probe. This breakdown signals the importance of both probe
geometry and field retardation effects. Lacking these con-
siderations, previous models have dramatically overestimated
the near-field contrast generated by SiC [17,61], leaving the
estimation of optical properties through quantitative analysis
of near-field observables quite ambiguous.

Figure 6 displays quantitative agreement between newly
presented nanoFTIR spectroscopy of a 6H SiC crystal and
lightning rod model predictions. Asymmetry in the observed
phonon-induced probe-sample resonance spectrum mimics
that of the underlying surface response function β(ω). To
ensure unambiguous comparison between experiment and
theory, uniaxial optical constants of our crystal were directly
determined by in-house infrared ellipsometry and were found
consistent with literature data for similar crystals [62]. A
100 nm gold film was deposited onto the crystal surface to
provide a normalization material for nanoFTIR measurements,
which were conducted at 60-nm tapping amplitude across the
SiC-gold interface. The right inset of Fig. 6(a) displays strong
interfacial contrast in near-field amplitude measured across
the interface by pseudoheterodyne (PSHet) imaging [11] with
a CO2 laser tuned to 890 cm−1, with nanoFTIR acquisition

positions indicated. As confirmed by nanoFTIR, near-field
resonance with the SiC surface optical phonon produces a
stronger signal than gold across a considerable energy range,
800–940 cm−1. Such strong near-field resonances enable
potential technological applications for guiding and switching
of confined infrared light within nanostructured polar crystals,
as suggested in related work [63].

Predicted spectra presented in Fig. 6(b) reveal that explicit
consideration of field retardation effects according to the
findings of Sec. IV (spectra labeled “Ret.”) significantly
improves quantitative agreement with experimental spectra
in contrast to the quasistatic prediction (labeled “QS”), which
drastically overestimates the near-field contrast of SiC up to
a factor of 20 over gold. The QS curve additionally reflects
an excessive redshift of the probe-sample resonance peak on
account of the overly predominant low-momentum phonon
excitations permitted in the quasistatic approximation; these
reside at lower energy due to the typical positive group velocity
of surface phonon polaritons. We furthermore explored the
influence of particular probe geometries on the predicted
near-field spectrum by employing charge distributions �(q,z)
calculated for both the ideal hyperboloidal probe geometry as
well as for the actual profile of an used probe tip, obtained from
an SEM micrograph [displayed as the blue curve in Fig. 1(a)].
The Fig. 6(b) comparison of SiC spectra predicted with these
geometries reveals that only essential features of the probe
geometry, such as the overall conical shape and taper angle
(θ ≈ 20◦) shared by both, are relevant for predicting near-field
contrasts at the 10% level of accuracy. Further quantitative re-
finements to near-field spectroscopy will therefore benefit from
the standardization of reproducible probe geometries [64].

VII. NANORESOLVED EXTRACTION OF
OPTICAL CONSTANTS

Systematic improvements in the light sources and detection
methods available for near-field spectroscopy now enable
sufficiently high signal-to-noise levels and fast acquisition
times for routine, reproducible measurements [7,8]. Figure 7
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FIG. 7. (Color online) Amplitude S and phase φ of the backscat-
tered near-field signal from a 300-nm SiO2 film, measured in the
vicinity of the surface optical phonon and referenced to the silicon
substrate, as obtained in a single acquisition by nanoFTIR.

displays newly presented nanoFTIR measurements acquired
on a 300-nm SiO2 film with silicon used for normalization,
displaying both the amplitude S and phase φ of the probe’s
backscattered radiation demodulated at the second and third
harmonics of the probe frequency, collected at 60-nm tapping
amplitude. Such broadband data are ideally eligible for the
quantitative extraction of SiO2 optical constants in the vicinity
of the transverse optical phonon (ωTO ≈ 1075 cm−1).

Using the lightning rod model, a method requiring minimal
computational effort was developed to solve the inverse
problem of near-field spectroscopy, proceeding as follows: The
connection between optical properties of a sample material
(e.g., the complex dielectric function, ε = ε1 +iε2) and
near-field observables (e.g., S and φ, or equivalently the
real and imaginary parts of the complex backscattered signal
s = s1 + is2 at a given harmonic n � 2) is described by a
smooth map NF : C → C, withC the set of complex numbers.
A “trajectory” s(ω) through the space of observable near-field
signals therefore corresponds to a trajectory ε(ω) through the
space of possible optical constants. The uniqueness of this
correspondence was confirmed for bulk and layered sample
geometries by computing s = NF(ε) across the parameter
range of interest for real materials (ε2 > 0) and ensuring local
invertibility of the map, conditional on the determinant of the
Jacobian matrix of NF:

|J (ε1,ε2)| > 0 with J (ε1,ε2) = ∂(s1,s2)

∂(ε1,ε2)
. (23)

Because parameters internal to the operation of NF are
frequently variable (e.g., sample thickness, tip radius of
the probe, tapping amplitude), instead of establishing the
inverse map NF−1 as a “look-up table” by brute computation,
we instead introduce a method for nucleated growth of the
trajectory ε(ω) which optimizes consistency with the forward
mapping s = NF(ε) beginning at some initial frequency ω0.
We re-imagine the problem as a particle navigating ε space
under the influence of external forces penalizing displacements
δs from measured signal values s(ω). The trajectory ε(ω) for

such a particle solves, for example, the equation of motion for
a damped harmonic oscillator equilibrating to s = NF(ε):

d2

dω2
δs + 2ζ �

d

dω
δs + �2 δs = 0 with

(24)
δs(ω) ≡ s(ω) − NF(ε(ω)).

Here, ζ denotes a damping constant tuned to induce critical
damping (ζ = 1), and � is a force constant ensuring decay
to equilibrium over an interval δω = 2π/� comparable to the
frequency resolution of measurement. This equation of motion
enables adiabatic tracking of experimentally observed signal
values while both penalizing deviations δs and dissipating their
energy. Equation (24) may alternatively be parametrized by an
auxiliary independent variable x for which ω(x) increments
only when |δs(ω)| < δsthresh, a threshold value ensuring system
equilibration arbitrarily close to the measured signal value at
each ω. This also ensures solutions to Eq. (24) are relatively
insensitive to the “guessed” initial condition ε(ω0), amounting
to a robust relaxation method.

Our inversion of measured s(ω) consists of numerically
solving Eq. (24) for ε by finite difference techniques [65].
This requires at least five evaluations of NF per ω- or x-step in
order to estimate local first and second derivatives of NF with
respect to real and imaginary parts of ε. Although consequently
the procedure is more computationally costly than forward
evaluation by the lightning rod model, it is at least as efficient
in principle as global nonlinear least-squares methods (e.g.,
Levenberg-Marquardt [66]) and often considerably faster,
furthermore requiring no a priori knowledge for the form
of the fitting function. This is considerably advantageous in
cases where spectra are not available in a sufficiently wide
frequency range to permit well-determined fitting to ε(ω) by
Kramers-Kronig-consistent oscillators [67].

We applied our inversion technique to the spectroscopic
data displayed in Fig. 7 by parametrizing NF with the reflection
coefficient of an “unknown” 300-nm layer (film thickness
determined by AFM) on silicon substrate. For mapping
the film’s optical constants εfilm(ω) = ε1(ω) + i ε2(ω) to a
measurable, normalized near-field spectrum sn(ω), the form
for NF used here is that given by the lightning rod model,
namely,

NF(ε1(ω),ε2(ω)) = s film
n (ω)/sSi

n (25)

with

s film
n (ω) =

∫ π/�

−π/�

dt sin (n�t) E film
rad (d,ω), (26)

E film
rad (d,ω) = �erad · G film(d,ω)

��0

I − �G film(d,ω)
, (27)

and d = A (1 + sin (�t)). Describing the near-field response
of the film, G film(d,ω) is given by Eq. (11) in terms of the film
reflection coefficient r film

p (q,ω), which is in turn a function
of εfilm(ω) via Eq. (21). The silicon normalization signal sSi

n is
computed analogously, but using the reflection coefficient for
a bulk surface with frequency-independent dielectric constant
εSi ≈ 11.7. All other parameters are defined as detailed in
Sec. II.
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(a) (b)

FIG. 8. (Color online) (a) Typical variation in optical constants among thermal oxide thin films taken from literature ellipsometry. Pairs of
red and blue curves with identical line style are associated with distinct thin film samples [44]. (b) Optical constants of a 300-nm SiO2 film
extracted from near-field spectra S2(ω) and S3(ω) following the method of Eq. (24).

In Fig. 8, we present the favorable comparison of our
extracted εfilm(ω) with typical literature optical constants for
three thermal oxide films measured by conventional infrared
ellipsometry [44]. Figure 8(a) makes clear the typical variation
in optical constants expected among oxide films grown even
under nominally fixed conditions. Furthermore, our extraction
technique produced virtually identical output when conducted
on both second and third harmonic near-field spectra [s2(ω) and
s3(ω)], attesting to the internal consistency of the lightning rod
model.

Although near-field inversion has been very recently
demonstrated on measurements of prepared polymers, the
existing technique relies on a polynomial expansion in β

strictly limited to weakly resonant samples, viz., the pertur-
bative limit of Eq. (13), and employs a model with tunable
ad hoc parameters [30,32]. Our procedure removes both
shortcomings. These advantages make Eq. (24) a suitable
technique for the unconditional on-line analysis of near-field
spectroscopy data in a diagnostic setting. Combining for
the first time the powerful nanoFTIR instrumentation with
a quantitative inversion methodology unlimited by sample
characteristics, this procedure makes possible potent new
applications of nanospectroscopy to the quantitative optical
study of phase-separated materials [17,18] and nanoengi-
neered devices [21,22], as well for the nanoresolved chemical
identification of structures in biological or surface science
applications [7,9,16,32].

VIII. CONCLUSIONS AND OUTLOOK

The lightning rod model provides a general quantitative
formalism for predicting and interpreting the experimental
observables of near-field spectroscopy. Simplified descriptions
of the probe-sample near-field interaction such as the point
dipole model can be obtained as special cases resulting
from convenient though unnecessary physical assumptions.
In particular, the choice of effective probe length L [30,32]
was shown to be ad hoc in the quasistatic approximation,
and consequently susceptible to dubious a posteriori fitting to
experimental data.

We find a fully electrodynamic treatment renders the
effective length construct unnecessary, since field retardation
effects modify the distribution of probe charge interacting
with the sample. While this provides a resolution to problems
of convergence inherent to the quasistatic treatment, sample-
induced dielectric loading of strong antenna resonances (e.g.,
for the long ellipsoidal probe) was found to deceivingly
modulate relative material contrasts predicted in the vicinity of
sample resonances, such as the surface optical phonon of SiO2,
an important caveat and consideration for the rational design of
optimized spectroscopic probes [49]. Nevertheless, fine details
of the probe geometry for realistic conical probe geometries
are predicted to impact observable near-field material contrasts
at or below a 10% level of variation.

Using the fully retarded lightning rod model with a realistic
probe geometry, we obtain quantitatively predictive agreement
compared both with tunable QCL near-field spectroscopy of
SiO2 films with varying thickness and with newly presented
nanoFTIR spectroscopy measurements of the strongly reso-
nant polar material SiC. This exhibits our model’s proper
momentum-space description of the probe-sample optical
interaction, as well as its suitability for the truly quantitative
description of strongly resonant near-field interactions, in
contrast with the capabilities or implementations of the
alternative models heretofore demonstrated [34,35,61].

Finally, we present a deterministic method to invert the
lightning rod model without recourse to ad hoc parameters
or oversimplifications. This rather general technique flexibly
solves the inverse problem of near-field spectroscopy at
a computational cost significantly lower than exhaustive
lookup tables or oscillator fitting methods, offering exciting
opportunities for the on-line interpretation of nanoresolved
near-field spectra acquired in a diagnostic setting. We envision
the inverse lightning rod model employed quantitatively for
deeply subwavelength optical studies of naturally or artifi-
cially heterogeneous and phase-separated materials, promising
further novel applications to systems like energy storage
nanostructures [68], transition metal oxide heterostructures
[69], and single- or multilayered graphene plasmonic devices
[20,21].
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There remain outstanding challenges for the present model,
including its extension to cases where deviations from
axisymmetry are crucial, as for s polarization of incident light,
or for probe geometries with strong rotational asymmetry. We
envision an expansion of our boundary element methods and of
the lightning rod model into basis components with differing
rotational “quantum numbers” [70] to capture the features
of irrotational geometries in a computationally inexpensive
fashion. Furthermore, the explicit application of our model to
dielectric probes, particularly in the plasmonic regime, is an
undertaking of great potential interest for which the extension
of our electrodynamic boundary element (Appendix D) to
materials of non-negligible skin depth might play a crucial role.
However, even at its present stage the quantitative scattering
formalism presented here also lays a solid foundation for the
rational analysis and optimization of tip-enhanced optical phe-
nomena in an ever-growing number of exciting experimental
applications, including single-molecule Raman spectroscopy
[15,71] and other novel partnerships of optics with scanning
tunneling microscopy [72,73].
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APPENDIX A: EXPERIMENTAL METHODS

In the following sections, we apply the lightning rod model
in comparison with near-field spectra measured for SiO2

thin films and SiC, acquired with the following experimen-
tal apparatus. Infrared nanoimaging and nanospectroscopy
measurements were performed with a NeaSNOM scanning
near-field optical microscope (Neaspec GmBH) by scanning
a platinum silicide AFM probe (PtSi-NCH, NanoAndMore
USA; cantilever resonance frequency 300 kHz, nominal radius
of curvature 20–30 nanometers) in tapping mode over the
sample while illuminating with a focused infrared laser
beam, resulting in backscattered radiation modulated at the
probe tapping frequency � and harmonics thereof. In our
pseudoheterodyne detection setup, this backscattered radiation
interferes at a mercury-cadmium-telluride detector (Kolmar
Technologies Inc.) with a reference beam whose phase is
continuously modulated by reflection from a mirror piezoelec-
trically oscillated at a frequency δ� (≈300 Hz). Demodulation
of the detector signal at frequency side-bands n� ± m δ�

for integral m supplies the background-free amplitude Sn and
phase φn of the infrared signal at harmonics n of the probe’s
tapping frequency [4,10,11].

The superlinear dependence of near-field interactions ver-
sus the tip-sample separation distance implies that, in the
case of harmonic tapping motion, signal harmonics at n � 2
are directly attributable to near-field polarization of the tip
[50]. Contrasts in near-field signal intensity and phase at these
harmonics therefore correspond to variations in local optical
properties of the sample [26]. Tunable fixed-frequency CW
quantum cascade lasers (QCLs, Daylight Solutions Inc.) and

a tunable CO2 laser (Access Laser Co.) were used for imaging
and spectroscopy of SiO2 films and SiC, respectively.

NanoFTIR spectroscopy [7,8] was enabled by illumination
from a broadband mid-infrared laser producing tunable radi-
ance across the frequency range 700–2400 cm−1. This coherent
mid-infrared illumination is generated through the nonlinear
difference-frequency combination of beams from two near-
infrared erbium-doped fiber lasers—one at 5400 cm−1 and the
other a tunable supercontinuum near-infrared laser (TOPTICA
Photonics Inc.)—resulting in 100 fs pulses at a repetition
rate of 40 MHz. An asymmetric Michelson interferometer
with 1.5-mm travel range translating mirror enables collection
of demodulated near-field amplitude Sn(ω) and phase φn(ω)
spectra with 3 cm−1 resolution.

APPENDIX B: RESOLUTION OF THE FIELD FROM A
CHARGED RING INTO EVANESCENT WAVES

The xy-plane Fourier decomposition of the Coulomb field
of a point charge Q located at the origin is well known [74]:

�E(�r) = − Q

2π

∫∫ ∞

−∞
dkx dky

(
i
kxx̂ + kyŷ

q
+ ẑ

)
× ei(kxx+kyy)+qz

= −Q

∫ ∞

0
dq q (J0(qρ)ẑ + J1(qρ)ρ̂)eqz (B1)

for z < 0 and with q ≡
√

k2
x + k2

y . This decomposition can be
applied similarly to a ring of charge with radius R, centered
in a plane through the origin with z-axis normal:

�ER(�r) = Q

4π2

∫ 2π

0
dφ′

∫ ∞

0
dq

∫ 2π

0
dφ �ER(q,�r,φ′)

�ER ≡ −
(

ẑ + i
kxx̂ + kyŷ

q

)
eiq(ρ cos φ−R cos (φ−φ′))+qz.

Here, φ′ is an angular integration variable about the circum-
ference of the ring. We obtain

�ER(�r) = −Q

∫ ∞

0
dq q J0(qR) (J0(qρ)ẑ + J1(qρ)ρ̂) eqz.

(B2)
The total field is thus a sum of axisymmetric p-polarized

evanescent waves weighted by the geometry-induced prefactor
q J0(qR). Equation (B2) constitutes the central result of this
section.

APPENDIX C: QUASISTATIC BOUNDARY ELEMENT
METHOD FOR AN AXISYMMETRIC DIELECTRIC AND

CONDUCTOR

A tractable electrostatic boundary element method applica-
ble to systems of homogeneous dielectrics can be developed
as follows [70]. Gauss’s law constrains the density of bound
charge ρb at the boundaries between dielectric media as [75]

∇ · �E = ∇ ·
�D
ε

= 4πρb

(C1)

∴ 4πρb = δS

(
1

ε2
− 1

ε1

)
n̂12 · �D.
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Equation (C1) follows in the case that free charge is absent at
dielectric boundaries such that ∇ · �D = 0, and δS is a surface
Dirac delta function associated with the boundary between
media of dielectric constant ε1 and ε2, with n̂12 the unit vector
perpendicular to this boundary oriented from medium 1 to
medium 2. Continuity of the surface normal displacement field
across the dielectric interface permits its evaluation at positions
�r along the boundary as a limit taken infinitesimally inside
medium 2:

n̂12 · �D (�r) = ε2 lim
t→0+

−n̂12 · ∇V (�r + t n̂12) . (C2)

The scalar potential V (�r) finds contributions from both
incident (external) fields �Einc, originating as from distant
free charges, as well as from bound charges at the dielectric
boundary. Taking the bound charge ρb as the product of a
surface density σQ (distinguished from electrical conductivity
σ ) with the surface Dirac delta function, the latter contribution
comprises a surface integral on the boundary S:

Vb(�r) =
∫

S

dS ′ σQ(�r ′)
|�r − �r ′| . (C3)

Evaluating the discontinuous surface normal electric field
−n̂12 · ∇Vb from this contribution involves

lim
t→0+

−n̂12 · ∇(1/|�r + t n̂12 − �r ′|) = 2πδ(�r − �r ′) − F (�r,�r ′)

with F (�r,�r ′) ≡ − n̂12 · (�r − �r ′)
|�r − �r ′|3 . (C4)

Gauss’s law [Eq. (C1)] therefore yields an integral equation in
the surface bound charge density σQ(�r):

4π
ε1ε2

ε1 − ε2
σQ(�r)

= ε2

[
n̂12 · �Einc(�r) + 2πσQ(�r) −

∫
S

dS ′ F (�r,�r ′) σQ(�r ′)
]
,

(C5)

which upon consolidation yields

2π
ε1 + ε2

ε1 − ε2
σQ(�r) = n̂12 · �Einc −

∫
S

dS ′ F (�r,�r ′) σQ(�r ′). (C6)

Without loss of generality, this equation can be utilized to pre-
compute the quasielectrostatic response of an axisymmetric
body of dielectric constant ε2 to incident fields, taking ε1 = 1
as air, parametrizing the integral kernel F by axial and surface
radial coordinates z and Rz, respectively, and expressing n̂12

through axial derivatives of the latter.
However, to unambiguously present our method of solution

to equations like Eq. (C6) and to promote its application for
the description of metallic near-field probes, we confine our
attention specifically to the ideally conducting limit, wherein
ε2 is divergent. For Eq. (C1) to hold with finite normal
displacement in Eq. (C2) therefore requires a vanishing normal
gradient of the total potential V just inside the probe surface.
Lacking free or bound charges within its volume, the probe
interior and surface therefore reside at constant total potential,
signifying zero internal field and perfect screening by the
surface:

Vinc(�r) + Vb(�r) = V0 on S. (C7)

This criterion follows equivalently from Eq. (C6) in the limit
ε2 	 ε1 through reverse application of Eq. (C4).

The incident potential of an axisymmetric evanescent field
is given in cylindrical coordinates ρ, φ, and z by Vinc(�r) =
J0(qρ)/q e−qz. The potential Vb is generated by the surface
charge density σQ(�r), which may be divided into a continuum
of rings, each with charge dQ = λQ(z) dz and radius Rz:

Vb(�r) =
∫

S

dS ′ σQ(�r ′)
|�r ′ − �r|

=
∫ ∞

0
dz′ �(�r,z′) λQ(z′), (C8)

� ≡
∫ 2π

0

dφ′

2π

1√
(z′ − z)2 + ρ2 + R2

z′ − 2ρRz′ cos φ′

=
2K

[− 4 ρ Rz′
(ρ−Rz′ )2+(z−z′)2

]
π

√
(ρ − Rz′ )2 + (z − z′)2

. (C9)

Here, � constitutes the Coulomb kernel for a ring of charge,
and K(. . .) denotes the elliptic integral of the first kind.
Evaluating Vobj at the boundary of the object (ρ = Rz) and
discretizing z in Eqs. (C7) and (C8) as by Gauss-Legendre
quadrature, we obtain the linear system

M �λQ = V0 − �Vinc with
(C10)

Mij ≡ �(zi,zj ) δzj .

Vectors denote evaluation at positions {zi,R(zi)}. The condi-
tion of overall charge neutrality fixes the value of V0:∑

i

�λQ δzi = 0 =
∑

i

δzi M−1(V0 − �Vinc)

(C11)

∴ V0 =
∑

i δzi[M−1 �Vinc]i∑
i δzi[M−1 �I ]i

.

Here, �I denotes a vector with all entries unity. While Eq. (C10)
would appear to be directly solvable, such Fredholm integral
equations of the first kind are notoriously ill-conditioned.
Consequently, we adopt regularization methods [76,77] to
invert the integral operator (matrix) M, yielding smooth
functions λ(z) in accord with standard quasistatic solutions
for well-studied geometries like the conducting sphere and
ellipsoid. [It is worth noting that, since Eq. (C6) presents a
well-conditioned Fredholm integral equation of the second
kind, no such regularization of the solution is required in the
case of a dielectric solid.] Once the inverse operator M−1 has
been computed for a given geometry, calculation of λ(z) for
arbitrary Vinc(�r) is fast and trivial.

For an axisymmetric system, Eqs. (C10) and (C11) together
with this solution method are sufficient to calculate the linear
charge density induced on a conducting body due to an incident
quasistatic field, and constitute the central result of this section.
In practice, the converged calculation of M−1 for a particular
axisymmetric geometry takes no longer than a few tens of
seconds on a single 2.7-GHz processor. Calculation of λ(z) for
a range of q values sufficient for converged lightning rod model
calculations requires only several seconds using the same
processor. In this work, the incident potential appropriately
used for Vinc at q = 0 corresponds with a homogeneous axially
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polarized field, Vinc(�r) = Einc z. Thereby λ(z) computed for
q = 0 and q = 0 across discretized momenta qi are taken as
an adequately-sampled representation for �0(z) and �(q,z),
respectively.

APPENDIX D: ELECTRODYNAMIC BOUNDARY
ELEMENT METHOD FOR AN AXISYMMETRIC

CONDUCTOR

As in the quasistatic case, the charge distribution induced
on a nearly perfectly conducting object by an incident elec-
trodynamic field oscillating at frequency ω resides exclusively
at the object’s surface. To compute this distribution, we begin
with detailed force balance at the boundary S along directions
tangential to the surface. Assuming axisymmetry, we need
only consider without loss of generality the surface tangential
directions ξ̂ orthogonal to φ̂ that possess positive ẑ component:

ξ̂ · ( �Einc + �Eobj) = �0 on S. (D1)

Since �E = −∇V + iω �A for scalar and vector potentials V

and �A, we have

Einc ξ (�r) =
∫

S

(∂ξ dVobj(�r) − iω ξ̂ · d �Aobj(�r)) on S

=
∫ L

0
dz′[∂ξ�(z,z′) λQ(z′) − iωAξ (z,z′) I (z′)],

(D2)

where we have parametrized points on S by the object’s axial
coordinate 0 < z < L; meanwhile λQ(z) ≡ dQ/dz denotes
the linear charge density and I (z) denotes the total current
passing along the object surface through a ẑ-normal plane at z.
� and Aξ denote integration kernels for the scalar and vector
potentials, respectively.

The continuity equation for charge implies ∂zI (z) =
iω λQ(z), and since current is forbidden to flow from the
hypothetically isolated object, integration by parts yields

Einc ξ (z) =
∫ L

0
dz′λQ(z′)

[
∂ξ�(z,z′) − ω2

∫ z′

0
dz′ Aξ (z,z′)

]
.

(D3)

In terms of the azimuthal angle φ and surface radial coordinate
at z denoted Rz, the scalar potential kernel is given by

�(z,z′) =
∫ 2π

0

dφ′

2π

eiω/c �(z,z′,φ)

�(z,z′,φ)
with

(D4)
� ≡

√
(z − z′)2 + R2

z + R2
z′ − 2RzRz′ cos φ,

which may be computed straightforwardly for a given object
geometry by adaptive quadrature. The exponential phase
ensures the integrand is evaluated at retarded time. The vector
potential kernel may be established from

�A(�r) = 1

c2

∫
dS ′ �K(�r ′)

|�r − �r ′| eiω/c |�r−�r ′| (D5)

and

Aξ (z,z′) ≡ ξ̂z · d �A
dz′ (z), (D6)

with �K(z) ≡ I (z)/2πRz ξ̂ denoting the local surface current.
Noting that dS ′ = 2πR′

z

√
1 + ∂z′R′

z dz′ and that the direction
of ξ̂ is manifestly z- and φ-dependent (expressed here as ξ̂zφ),
we obtain

dAξ

dz′ (z) =
√

1 + ∂z′R′
z

I (z′)
c2

∫ 2π

0

dφ′

2π

ξ̂zφ · ξ̂z′φ′

|�r − �r ′| ei ...,

with the exponential factor unchanged. The φ dependence of
Aξ is rendered moot on account of axisymmetry, and so is
suppressed.

Finally, since the surface tangential unit vector at height
z and azimuthal angle φ is expressed in terms of the radial
coordinate Rz and the radial unit vector ρ̂φ as

ξ̂zφ = ∂zRz ρ̂φ + ẑ√
1 + ∂zR2

z

, with ρ̂φ · ρ̂φ′ = cos(φ − φ′),

we obtain the vector potential kernel as

Aξ (z,z′) = 1

c2

[ ∫ 2π

0

dφ′

2π

eiω/c �(z,z′,φ′)

�(z,z′,φ′)

+ ∂zRz ∂z′Rz′

∫ 2π

0

dφ′

2π

eiω/c �(z,z′,φ′)

�(z,z′,φ′)
cos φ′

]
× 1√

1 + ∂zR2
z

. (D7)

Here, � is defined as in Eq. (D4), and note that the first term
within brackets in fact equates with the scalar potential kernel.
Only the second term must be computed anew, and similarly
by adaptive quadrature.

We now define a convenient quasipotential function for the
incident field:

Vinc(z) ≡ −
∫

dz

√
1 + ∂zR2

z ξ̂z · �Einc(z)

= −
∫

dz (∂zRz Einc ρ + Einc z). (D8)

Proceeding with Eq. (D3), we relabel z → z before applying

the operation
∫ ξz

0 dξ = ∫ z

0 dz

√
1 + ∂zR2

z to both sides, result-
ing in∫ L

0
dz′λQ(z′)

[
�(z,z′) − ω2

c2

∫ z

0
dz

∫ z′

0
dz′ Āξ (z,z′)

]
= V0 − Vinc(z). (D9)

Here we have applied Eq. (D8) and taken V0 as a constant
of integration. Furthermore, we have defined a new vector
potential kernel Āξ (z,z′) ≡ √

1 + ∂zR2
z Aξ (z,z′), which is

now symmetric in its two arguments. Note that the first term in
brackets in Eq. (D9) accounts for the retarded Coulomb force
among surface charges, whereas the second term describes
radiative forces with strength of order O2(L/λ) produced by
conduction currents, where λ the free-space wavelength of
light.

As in Appendix C, discretizing z results in a linear system(
� − ω2

c2
W

T ĀW
)

W�λQ = V0 − �Vinc, (D10)
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where �ij ≡ �(zi,zj ), W ≡ diag{δzi}, Āij ≡ Āξ (zi,zj ),
Wij ≡ δzi θ (j − i), and θ (. . .) denotes the Heaviside unit
step function. The superscript T denotes matrix transpose.
Vectors again denote evaluation at axial and radial coordinates
{zi,R(zi)} along the object surface. Self-consistency requires a
value of V0 ensuring charge neutrality. Taking M to be the full
integral operator preceding �λQ in the linear system above, V0

is again given by Eq. (C11), and �λQ is obtained via inversion
of M. Note that the particular selections of lower integration
bounds on Vinc in Eq. (D8) and Ā in Eq. (D9) are naturally
rendered arbitrary when this condition is satisfied. As in the
quasistatic case, once M−1 has been computed for a given
geometry (less than one minute of computation on a 2.7-GHz
processor), the calculation of λQ(z) for arbitrary �Einc(�r) is both
fast and trivial (several milliseconds). To emulate plane-wave
illumination from an inclination angle θ with respect to the z

axis, in this work, we substitute the axisymmetric analog

�Einc(�r) =
(

J0(qρ) ẑ + i

√
k2 − q2

q
J1(qρ) ρ̂

)
e−i

√
k2−q2z

with q ≡ k sin θ and k ≡ ω/c. (D11)

This field profile equates with a rotational sum of θ -directed
plane waves inbound from all azimuthal angles φ.

For an axisymmetric system, Eqs. (D4), (D7), and (D10)
are sufficient to calculate the linear charge density induced on
a conducting body due to an incident electrodynamic field,
and constitute the central result of this section. In practice, the
converged electrodynamic calculation of M−1 for a particular
axisymmetric geometry takes only twice as long as for the
quasistatic case.

APPENDIX E: RADIATION FROM AN AXISYMMETRIC
CONDUCTOR

The far-field radiation profile from an arbitrary current
distribution can be obtained by integrating the far-field
contribution

←→
G FF to the Green’s dyadic function

←→
G [78]

from infinitesimal current elements at positions �r ′, here for
demonstration considered oriented along the ẑ direction, as

d �Erad(�r) = iω

4π
�GFF,z(�r,�r ′) jz(�r ′) dV ′ with

(E1)

�GFF,z(�r,�r ′) ≡ − 1

c2

eiω/c |�r−�r ′|

|�r − �r ′| sin θ θ̂ ,

exhibiting the familiar field profile of a radiating dipole. Here,
θ denotes the inclination angle of the observation point �r from
the z axis in a spherical coordinate system.

The dimension of a nearly perfect conductor is by definition
much greater than the magnetic skin depth of the constituent
material. Consequently, volume integration reduces to an
integral over surface current contributions dS �K(�r). In an
axisymmetric object, these contributions are associated with
surface annuli located at axial coordinates z and radii Rz,
for which dS = 2πRz dξ with dξ ≡ √

1 + ∂zR2
z dz. We first

evaluate the radiated field from such an annulus, considering
contributions from the two independently allowed polariza-
tions of axisymmetric current separately, as depicted in Fig. 9.

FIG. 9. (Color online) (Left) The field radiated from an ax-
isymmetric body to an observation point at inclination angle θ is
constructed from the contributions of currents (shown in red) through
infinitesimal surface annuli. (Right) The two independent polariza-
tions composing any annular axisymmetric current distribution, with
associated angular radiation profiles [Eq. (E1)] shown schematically
in blue.

We define the total current as Iα(z) = 2πRz Kα(z) for
polarizations α = z,ρ. For the z-polarized contribution, in-
tegrating Eq. (E1) through an annulus about azimuthal angle
φ obtains

d �Erad,z = − iω

4πc2

eiω/c δr(z)

δr(z)
sin θ Kz(z) dξ

×
∫ 2π

0
dφ Rz exp(iω/cRz cos φ sin θ )θ̂

= − iω

4πc2

eiω/c δr(z)

δr(z)
sin θ Iz(z) dξJ0(ω/cRz sin θ ) θ̂ .

(E2)

Here, δr(z) denotes the distance from the center of the
z-located annulus to the observation point, and we have applied
the approximation |�r − �r ′|−1 ≈ δr(z)−1 valid for δr(z) 	
Rz. An elementary analysis accounting for rotation of the
radiant polarization vector in the integrand of the ρ-polarized
contribution similarly results in

d �Erad,ρ = ω

4πc2

eiω/c δr(z)

δr(z)
cos θ Iρ(z) dξJ1(ω/cRz sin θ ) θ̂ .

(E3)

Current I (z) flows on the surface of an axisymmetric
conductor along a surface tangent vector

ξ̂ = ∂zRz ρ̂ + ẑ√
1 + ∂zR2

z

.

Consequently, the total radiation from the axisymmetric body
of length L is given by a commensurate sum of ẑ- and ρ̂-
polarized contributions:

�Erad(θ ) = − iω

4πc2

eiω/c �r

�r

∫ L

0
dz E(z,θ ) I (z) θ̂ (E4)

with

E = e−iω/c z cos θ [sin θ J0(ω/cRz sin θ )

+ i ∂zRz cos θ J1(ω/cRz sin θ )]. (E5)
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Note the factor 1/
√

1 + ∂zR2
z has been absorbed by the inte-

gration measure dz. Here �r ≡ δr(z) + z cos θ is the distance
from one apex of the object (at z = 0) to the observation
point, and we have applied the approximation δr(z)−1 ≈
�r−1 appropriate for distances �r 	 L. After applying the
continuity equation for charge ∂zI (z) = iω λQ(z) (with λQ the
linear charge density) together with the fact that the current
vanishes at the extrema of a hypothetically isolated body (at
z = 0, L), integration by parts yields

�Erad(θ ) = − ω2

4πc2

eiω/c �r

�r

∫ L

0
dz λQ(z)

∫ z

0
dz′E(z′,θ ) θ̂ .

(E6)

Provided an electrodynamically consistent charge distribu-
tion λQ(z) calculated at frequency ω, Eq. (E6) can be evaluated
straightforwardly for a given object geometry by quadrature.

In the notation of Appendix D, the complex amplitude of the
θ̂ -polarized radiation field becomes

Erad(θ ) = − ω2

4πc2

eiω/c �r

�r
�λT

Q W W �Eθ . (E7)

Here, the superscript T denotes vector transpose, and �Eθ

indicates evaluation of E(z,θ ) at the chosen observation
angle θ . Together with Eq. (E5), this expression is sufficient
to compute the electric field radiated from a conducting
axisymmetric system, and constitutes the central result of this
section.

Projected onto a detector sensitive to θ̂ -polarized light, the
radiation contributions [�erad]i utilized in Sec. II are computed
by expressing each single-momentum probe response function
(linear charge density) �(qi,z) in discretized real-space rep-
resentation [�λQ]j ≡ �(qi,zj ) and applying Eq. (E7), taking
θ ≈ 60◦ relative to the z axis of the near-field probe as the
typical collection angle of experimental detection optics.
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[57] P. Alonso-González, P. Albella, F. Golmar, L. Arzubiaga,
F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand,
Opt. Express 21, 1270 (2013).

[58] F. Giustino and A. Pasquarello, Phys. Rev. Lett. 95, 187402
(2005).

[59] A. A. Balandin, E. P. Pokatilov, and D. Nika, J. Nanoelectron.
Optoelectron. 2, 140 (2007).

[60] T. Taubner, F. Keilmann, and R. Hillenbrand, Opt. Express 13,
8893 (2005).

[61] A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, Nano Lett.
6, 774 (2006).

[62] H. Mutschke, A. Andersen, D. Clement, T. Henning, and
G. Peiter, Astron. Astrophys. 345, 187 (1999).

[63] R. Hillenbrand, Ultramicroscopy 100, 421 (2004).
[64] S. W. Schmucker, N. Kumar, J. R. Abelson, S. R. Daly, G. S.

Girolami, M. R. Bischof, D. L. Jaeger, R. F. Reidy, B. P. Gorman,
J. Alexander, J. B. Ballard, J. N. Randall, and J. W. Lyding, Nat.
Commun. 3, 935 (2012).

[65] J. Kiusalaas, Numerical Methods in Engineering with Python,
2nd ed. (Cambridge University Press, NY, USA, 2010), pp. 246–
262 and 216–229.

[66] D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
[67] A. B. Kuzmenko, Rev. Sci. Instrum. 76, 083108 (2005).
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